
NMRA Technical Note

Layout Command Control® (LCC)

Memory Configuration

Feb 6, 2016 TN-9.7.4.2

 Adopted as a NMRA Technical Note
The OpenLCB Standard document appended to this cover sheet has been formally adopted as a
NMRA Standard by the NMRA Board of Directors on the date shown in the Adopted column in
the Version History table below.

 Version History
Date Adopted Summary of Changes

Feb 17, 2015 Initial version submitted for public comment

Feb 6, 2016 Feb 20, 2016 Minor grammatical corrections and readability improvements as
well as the following specific changes:

• Added paragraph to section

◦ 2.4.19 Get Unique ID Command

• Added sections

◦ 2.4.21 Unfreeze Command

◦ 2.4.22 Freeze Command

• Removed section

◦ 4.24 Enter Bootloader Command

5

Adopted as NMRA Technical Note TN-9.7.4.2

OpenLCB Technical Note

Memory Configuration

Feb 6, 2016 Adopted

 1 Introduction
This Technical Note provides background for the association Memory Configuration Standard.

The protocol is called “Memory Configuration” because it makes the configuration information
in the node look like it's stored in linear memory spaces.

• Don't assume that the information actually has to be stored the same way as it is accessed
through this protocol, as linear memory. The node can remap the information that's being
read or written into whatever internal organization it needs.

• Don't assume that no other configuration protocol exists. Some day, for example, there
might be a “file access configuration protocol” where a node pulls predefined
configuration information from some central store of “files”. Or something else. There's
already the teach/learn method of configuring events.

• Don't assume that this is only used for persistent configuration information. The protocol
is already being used for e.g. retrieving the CDI, and for providing a simple debug
capability that allows programmers the ability to read (and even write) raw node RAM. It
can be used for other things in the future using the memory space mechanism.

 2 Annotations to the Standard
 2.1 Introduction

Note that this section of the Standard is informative, not normative.

 2.2 Intended Use

Note that this section of the Standard is informative, not normative.

 2.3 Reference and Context

For more information on format and presentation, see:

• OpenLCB Common Information Technical Note

 2.4 Message Formats

This section is about helping implementors see how to decode the message format. It's not
normative.

Configuration messages use a specific datagram format consisting of the datagram type byte,
followed by a single byte combining the operation “Command Type” field and flags. This is then
followed by data in an operation-specific format. The table below summarizes some of the
possible data formats supported by Memory Configuration messages.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 15 - Feb 6, 2016

5

10

15

20

25

30

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Remaining Bytes

Datagram
Type

(0x20)

Command
Type

Starting Address Address
Space

(Optional)

Command
Specific

Available Commands Write
Lengths

Highest
Address
Space

Lowest
Address
Space

Name String
(Optional)

Node ID

Address
Space

Highest Address Additional ...

Address
Space

Byte 1 has a number of decodable fields:

Byte 1 (Command Type)

Bits 7..6 – Command Type 0b00 – Write operations
0b01 – Read operations
0b10 – Control operations
0b11 – Not used / reserved

Bit 5 – Stream/Datagram 0b0 – Use Datagrams
0b1 – Use Streams

Bit 4 – Command/Reply 0b0 – Command
0b1 – Reply

Bit 3 – (Command) Under Mask
Bit 3 – (Reply) Fail/OK

0b0 – Not under mask
0b1 – Under mask
0b0 – Okay
0b1 - Fail

Bit 2 – Reserved 0b0 – send as zero, check on receipt

Bits 1..0 – Address Space 0b00 – Address space in byte 6
0b01 – Address space 0xFD
0b10 – Address space 0xFE
0b11 – Address space 0xFF

 2.4.1 Address Space Size
The four-byte address allows directly addressing 4GB of data. The use of address spaces (see
2.4.2.Address Space Selection) allows direct access to 1TB of data.

The large address range removes the need for address and paging registers and other non-idempotent
accesses when accessing e.g. sound information in a large memory.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 15 - Feb 6, 2016

35

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 2.4.2 Address Space Selection
Although a 32-bit address space is large enough to cover combined uses of memory, it can be more
convenient to consider separate address spaces in the node. This can also be considered to be a top
digit in a global address space, if desired, but note that the separate address spaces may cover the same
memory objects, e.g. “all memory” and “configuration” spaces may reference the same physical (or
virtual) location in memory.

 2.4.3 Generic Error Handling
An unknown command in byte 1 error may result from requesting a command that is not defined by the
standard, but it may also result from requesting a command the that standard defines, which the node
being accessed does not support. The error code to send is not specified, however, the recommended
error code to be sent in the OpenLCB Datagram Transport Datagram Rejected message the following:

• 0x1041 – Permanent error: Not implemented, subcommand is unknown.

In the appropriate situations a Datagram Rejected or a response datagram with Failed status should use
the following specific error codes:

• 0x1081 – Permanent error: Invalid argument. Address space not known.

• 0x1082 – Permanent error: Invalid argument. Out of bounds, address space is valid, but the
address within the space is not implemented.

• 0x1083 – Permanent error: Invalid argument. Write access to a read-only space.

In addition, all other error codes defined in the Message Network Standard or Datagram Standard may
be used, for example:

• 0x1000 – Permanent error, not further specified.

• 0x1040 – Not implemented, not further specified.

• 0x1080 – Invalid arguments, not further specified.

It is possible that OpenLCB Datagram Transport is not supported by the node, and by extension
OpenLCB Memory Configuration. If this is the case, the likely result is an OpenLCB Optional
Interaction Rejected message as defined in the OpenLCB Message Network Standard with the error
code 0x1043 (Not Implemented, unknown MTI or Transport protocol is not supported).

Additionally, the Datagram Rejected message may be received due to an OpenLCB Datagram
Transport layer error. This does not mean the Memory Configuration generated the error, and could be
due to a temporary inability to allocate a necessary buffer at the Datagram Transport layer, etc.

 2.4.4 Read Command
This is a request to read an address space. If the address space does not exist, a Datagram Rejected
message shall be sent with a permanent error. The likely error code would be:

0x1081 – Permanent error: Invalid argument. Address space not known.

The address space may be valid, however, the node may be busy or locked. In this case, the Datagram
Rejected message may be used, likely with a temporary error code (see OpenLCB Message Network
Standard). The requesting node may, or may not, try again later.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 15 - Feb 6, 2016

40

45

50

55

60

65

70

75

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 If the memory configuration protocol is being used to control e.g. DCC CV reads and writes, those
operations can take a very long time, 30 seconds or more. The Datagram OK message optionally
specify a timeout interval in order to provide guidance as to how long the read may take before
considering the read to be timed out. The timeout interval may in turn, but doesn't have to be, used to
indicate in-progress status.

 2.4.5 Read Reply
This message is sent in response to a Read Command which was previously responded to with a
corresponding Datagram OK message having had the Reply Pending bit set. If the Read Command
was previously responded to with a corresponding Datagram Rejected message, no Read Reply
message is required or expected.

A Read Reply is not considered to be in error unless it responds with zero bytes of data. In this case, a
failure should be indicated with an appropriate error code as defined by the OpenLCB Memory
Configuration Standard and/or the OpenLCB Message Network Standard.

The figure shows a typical read operation. The Read Command is carried to the device being
configured by a datagram, the read operation takes place, and the results are returned in another
datagram.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 15 - Feb 6, 2016

80

85

90

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 2.4.6 Read Stream Command
Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

 2.4.7 Read Stream Reply
Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 15 - Feb 6, 2016

95

100

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 2.4.8 Write Command
Most writes are assumed to always complete immediately and without error. Writes into memory are
certainly like that, but writes to DCC CVs might not be. Into-memory writes are well served by “when
the positive reply to the datagram arrives, the write completed successfully”. That requires no extra
traffic to handle other cases.

A typical memory write operation. The Write Command and data are carried to the node being configured in a
single datagram. Since the write operation succeeds immediately, the only reply needed is the datagram reply.

 2.4.9 Write Reply
For the less-common case of writes that might fail and/or take a long time, the Datagram OK reply to
the Write datagram can have the Reply Pending bit set, followed by a Write Reply when the operation
is done. That Write Reply, in turn, informs the requester when the operation was complete, and
whether it completed OK.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 6 of 15 - Feb 6, 2016

105

110

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

A delayed response, either because the write takes significant time or could fail for some reason. The datagram reply
to the Write Command carries the reply pending bit set, and a reply datagram is send from the configured node
back to the configuring node with the reply.

 2.4.10 Write Under Mask Command
A write under mask differs from a standard write only in so far as it uses a stream of alternating bytes,
the first of which is a mask and the second of which is a value. Otherwise a Write Under Mask
Command sequence is identical to a standard Write Command sequence.

The primary use for this is to set/clear individual bits within a larger addressable type such as a byte, or
multi-byte word.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 7 of 15 - Feb 6, 2016

115

120

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 2.4.11 Write Stream Command
Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

 2.4.12 Write Stream Reply
Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

 2.4.13 Get Configuration Options Command
See section 2.4.14 Get Configuration Options Reply for additional information.

 2.4.14 Get Configuration Options Reply
To make it possible to make simple/cheap nodes, not every configuration operation & option needs to
be provided. The reply to “Get Configuration Options” provides information that a configuring device
can use to control how it communicates with the node so that it only uses available modes.

 2.4.15 Get Address Space Information Command
See section 2.4.16 Get Address Space Information Reply for additional information.

 2.4.16 Get Address Space Information Reply
To ease automated access, a configuring node can inquire about the address spaces in the being-
configured node. Whether or not the address space is present, a reply is required.

 2.4.17 Lock/Reserve Command
Although nodes can be configured by multiple other nodes, this can also lead to inconsistencies. The
optional Lock/Release command can be used to avoid this.

 2.4.18 Lock/Reserve Reply
See section 2.4.17 Lock/Reserve Command for additional information.

 2.4.19 Get Unique ID Command
Event IDs are considered to be 'virgin' until they are taught to another node. Learned Event IDs are not
virgin by definition, since they are shared by the taught node and by the node that did the teaching.

This command is used to obtain new virgin Event IDs and return them to the requesting node. The
node should draw these from some pool of unique virgin Event IDs. This may be from the 64k Event
IDs assigned to the node associated with its Node ID, or some other pool, but it must maintain the
uniqueness of the Event IDs. If the node maintains a counter or pointer to the pool, then the value of
this variable must be maintained even if the node goes through a reboot or reset. This means that its
value must be keep in non-volatile memory.

This command does not need to be implemented. However, if it is not, then some alternate method of
refreshing the node to virgin Event IDs should be implemented, such as Blue/Gold or other alternate
local method. Some nodes may not need even this if they only implement fixed or well-known Event
IDs, and a reusable range of Event IDs, for example time-events. If this protocol is not implemented,
but a button method is used, then other methods, such as the Remote Button Protocol might be used to
allow this function remotely.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 8 of 15 - Feb 6, 2016

125

130

135

140

145

150

155

160

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

Maintaining the uniqueness of Event IDs is a crucial underlying principle of OpenLCB, and needs to be
understood well so that inadvertent collisions of Event IDs are prevented. Manufacturers should go out
of their way to maintain Event ID uniqueness and should teach users the significance of maintaining
this fundamental principle.

Once Event IDs are taught, they represent an abstract idea, although that idea may certainly have
concrete consequences. For example, the abstract idea “Night has fallen” can be represented by a
shared Event ID between many nodes, and sending it can have many consequences. The important
point is that Event ID cannot be used for any other idea or purpose, unless it is removed from all nodes
that use it. That may be possible in a closed system, like a private layout, especially with the
appropriate software tools. However, not all systems are closed and not all nodes are reachable or
active. Consider a node that is non-powered, or one on the work-bench, or even more important the
one that you sold. The “Night has fallen” Event ID may still be used by any of those nodes, and they
can be used to teach it to yet more nodes. So, in general, it is much safer to have other mechanisms
available to prevent any inadvertent reuse of Event IDs.

One method is to provide a mechanism to reset the node such that all its Event IDs are replaced by a set
of new virgin Event IDs. For small nodes that use 2-100 Event IDs this is reasonable. Each node has
64k Event IDs assigned to it, and so these nodes can be reset 600-30k times before running out of
virgin Event IDs.

Another method, that is more frugal of Event IDs, is to only replace non-virgin Event IDs, i.e., those
that have been taught or learned, on a reset. Flag-bits would be used to remember which ones are non-
virgin, and thus which need replacing.

A further sophistication is to use a 'just-in-time' method. Each Event ID would be flagged as virgin or
non-virgin. When the node was to teach a non-virgin Event-ID, it would be replaced with a new virgin
one before the teaching occurred. The disadvantage to this method is that an EventID would only be
able to be taught once, whereas there are situations where it is desired to extend an abstract idea to
additional nodes. Unfortunately, by definition these Event IDs would already be considered non-virgin
and would be replaced by a new virgin Event ID. This could be mitigated by a more complicated UI,
but it would likely be confusing to the user.

Note that all mechanism for tracking Event IDs being “virgin” is dependent on the sole use of the
teach/learn protocol. As soon as a Configuration Tool reads the CDI and uses it to display the event IDs
to the user, there is no way for the node to keep track of the user copy-pasting the Event ID to some
other node, or writing it down.

As stated above, in a typical node, there is enough address space to produce nearly 64K of of Event IDs
based on the nodes single assigned Node ID. Though highly unlikely, it is possible that over time, a
node that has been reconfigured many times, could run out of Unique IDs. How a node behaves
if/when it runs out of Unique IDs is undefined, but here are some possible suggestions:

• Mark the affected Producers / Consumers with Event ID of zero, hence making them unusable;

• Reply using a Datagram Rejected message with permanent error for subsequent requests;

• Permanently stop working (never announce as initialized);

• Allow for manual user intervention to reset, or reassign the Unique ID space in the node.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 9 of 15 - Feb 6, 2016

165

170

175

180

185

190

195

200

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

However this is managed, the implementation must ensure that non-virgin event IDs are not re-used.

Solutions to the above limitations include:

• Design the node with more than 64k Event IDs, by using some of the Node ID bits to extend the
Event ID space. For example a node that is assigned a range of Node IDs, say a.b.c.d.e.00 –
a.b.c.d.e.FF could use 256x64k Event IDs;

• Teach an Event ID from another node (which has not run out of its space yet);

• Overwrite the zero Event ID using a configuration tool with a value from another pool assigned
to you.

 2.4.20 Get Unique ID Reply
See section 2.4.19 Get Unique ID Command for additional information.

 2.4.21 Unfreeze Command
The Freeze and Unfreeze commands intend to notify the target node that a sequence of configuration
changes shall be applied atomically, and that the node is not expected to perform its regular operations
during the time these configuration changes are downloaded and applied to the node. The expected
sequence is that the Configuration Tool sends a Freeze command for the given address space, then
some amount of writes, and finishes with an Unfreeze command.

Wrapping configuration changes with Freeze/Unfreeze shall be used by the Configuration Tool if and
only if a specific higher level standard or specification requires so. This provision is present so as to
explicitly specify which set of configuration changes require the use of Freeze/Unfreeze and not need
to have the Configuration Tools or end-users be burdened with figuring out or guessing whether a given
configuration change needs Freeze / Unfreeze.

There is no requirement in this standard on the Target Node on what to do or how to process the
Freeze / Unfreeze command. All such requirements, if any, will be coming from the application specific
standard. In general the Freeze command notifies the target node that it shall prepare for the atomic
configuration change, with the understanding that the node's user-visible operation may be suspended
for the duration of the changes. The Unfreeze command notifies the Target Node that the sequence of
atomic changes has ended, and it shall resume normal operation.

An example such application is Firmware Upgrade, as specified by the Firmware Upgrade Standard.
For purposes of replacing the node's firmware, the Freeze command will typically be implemented by
the Target Node by rebooting into a secondary firmware; the subsequent changes applied will overwrite
the primary firmware; the Unfreeze command will cause a reboot into the freshly updated primary
firmware and/or consistency checks on the received primary firmware.

As the Freeze and Unfreeze commands may have valid implementations with the side effect of
rebooting the Target Node, there is no requirement that a proper Datagram Received OK
acknowledgement be sent back to the Configuration Tool. The Configuration Tool shall watch the
network for Node Initialization Complete messages and interpret them as positive acknowledgement.

The Freeze and Unfreeze commands carry an Address Space identifier to allow the different higher-
level protocols to be disambiguated from each other by allocating a dedicated Address Space identifier
for them.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 10 of 15 - Feb 6, 2016

205

210

215

220

225

230

235

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 2.4.22 Freeze Command
See Section 2.4.21 Unfreeze Command for additional information.

 2.4.23 Update Complete Command
The configuration protocol does not specify the meaning of the transferred data. In particular, it doesn't
specify when new configuration information takes effect. Depending on how the node is constructed,
this might be immediately upon transfer (although this raises issues of write boundaries), or when an
entire sequence of transfers is complete. “Update Complete” is the command that indicates that a series
of configuration writes is consistent and complete, and the node can put it into effect.

 2.4.24 Reset/Reboot Command
The “Reboot/Reset” command is meant to reinitialize a node, equivalent to powering it up. Nodes
should finish any pending operations, e.g. non-volatile memory writes, before doing the initialization.
It's expected that the datagram reply will be sent before the reset, but this might not be entirely reliable.
Configuration tools should not count on the reply. The configuring node will receive a “Node
Initialization Complete” when the node is back up. This operation must not reset any configuration
information to default contents.

 2.4.25 Reinitialize/Factory Reset Command
This is a heavy-weight operation which may require some form of interlock, e.g. the user pressing a
button, to prevent inadvertent data loss. As a small safety precaution, the Node ID of the node being
reset is redundantly carried in the data part of the datagram.

There may also be implications if the node supports the Get Unique ID Command. If the node has
previously handed out Unique IDs, future Unique ID assignment is not prescribed by the standard. The
node could choose to continue assigning Unique IDs from where it left off before the reset, require the
user to enter in a new Unique ID pool into the node, or use some other unprescribed method to handle
(or not handle) potential conflicts as a result of the reset.

 3 General
 3.1 Environment of Protocol

 3.1.1 Requirements
• Nodes must carry enough context that a stand-alone configuration tool can provide a useful

human interface without getting any data from an external source, e.g. needing an Internet
download to handle a new node type.

• It must be possible to configure a node entirely over the OpenLCB, without physical
interactions, e.g. pushing buttons. This configuration must be compatible with local
configuration, including e.g. the Blue/Gold method.

• It must be possible to configure one or more nodes while the rest of the OpenLCB is operating
normally.

• It must be possible to read, store, and reload the configuration of a node.

 3.1.2 Preferences
• Small nodes shouldn't need a lot of processing power, e.g. to compress or decompress data in

real time. Memory usage should also be limited, but is a second priority.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 11 of 15 - Feb 6, 2016

240

245

250

255

260

265

270

275

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

• Configuration operations should be state-less and idempotent to simplify software at both ends.

• Multiple independent configuration operations can proceed at the same time. Multiple devices
should be able to configure separate nodes at the same time. Multiple overlapping reads of the
same node should be possible. There should be a method to coordinate separate configuration
operations to simplify configuration software.

• For efficiency, atomic reads or writes of small amounts of data should fit into a single-frame
CAN datagram. Single-bit writes also add efficiency.

• Multiple address spaces make it easier to handle multiple types of data.

• For large transfers, it's desirable to be able to use streams. Not all nodes support them, though,
so it must be possible to Inquire about capabilities.

• Addresses should be four bytes. Two address bytes is a failure of imagination.

 3.1.3 Design Points
Basic configuration is done with datagrams, which can carry 64 bytes of data to read or write.

For efficiency, writes don't need any reply except the datagram response. By sending that only after the
write is complete, including non-volatile memory delays, the written node can control the transfer rate.

Read operations must return data in a separate datagram. If this carries the address, etc, in addition to
the data, the operation is idempotent.

Read and write operations can address separate kinds of information in the node via specifying specific
address spaces. Three of these have specified uses, and the rest are optional tools for future expansion.

There are a large number of possible configuration options, and more may be developed in the future:
Reset, identify, etc. Not all nodes will implement all methods, so a query operation is needed so that
tools can know what they can do.

Can't require that nodes do anything in particular to put changes into effect. Some will do it right away,
some will require a reset, etc. Need flexibility for node developer, yet consistency for configuration
tool builder.

 3.1.3.1 Large read via stream

Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

 3.1.3.2 Large write via stream

Stream support within the OpenLCB Memory Configuration Protocol is considered experimental. A
version of this Technical Note and corresponding Standard containing updated information on the
usage of streams will likely be adopted at a future time.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 12 of 15 - Feb 6, 2016

280

285

290

295

300

305

310

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

 3.1.3.3 Performance Note

Small nodes may have only one datagram receive buffer and one datagram transmit buffer. In that case,
sending multiple reads can result in poor performance if the replies go after the next request, e.g.:

Read [d] →
← datagram reply
← Read Reply [d]
Read [d] →
datagram reply →
← datagram reply
← Read Reply [d]
datagram reply →

Note that the 2nd read command was sent before the reply to the Read-Reply datagram was sent. This is
valid, but nodes with only one buffer may not be able to handle that Read until the transmit buffer has
been emptied by an acknowledgement. In that case, the sequence may become e.g.:

Read [d] →
← datagram reply
← Read Reply [d]
Read [d] →
← datagram negative reply (reject, no buffer, please resend)
datagram reply →
Read [d] (retransmit) →
← datagram reply
← Read Reply [d]
datagram reply →

which is significantly less efficient. Better to send the positive acknowledgement to the read reply
datagram before sending the next read command.

 3.1.3.4 Delays Due to Non-Volatile Memory

Some microcontrollers can't continue to operate while writing configuration information to non-volatile
memory.

If the CAN buffering is sufficient (at about 200 usec per buffer) for the node to become active at the
end of the memory operation and process buffered frames at the full rate, there's no issue.

If a node has missed one or more frames, it's possible that some state interaction has started and the
node is inconsistent. For example, a RIM/CIM sequence could have started or even finished.

If the node misses one or more frames, the CAN controller needs to flag that and bring it to the
attention of the node's microcontroller. The node then needs to emit an “Initialization Complete”
message so that other nodes realize that this node may not have complete state information.

The node should also defer the reply to a write datagram until after the write is complete, to make it
less likely the next-in-sequence operation arrives during dead time. Nodes doing the configuring should
limit the amount of traffic they send to the node-under-configuration to reduce the need for e.g.
datagram retransmission.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 13 of 15 - Feb 6, 2016

315

320

325

330

335

340

345

350

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

There are bits that allow the node to specify what size writes are allowed. These can be used to force
the configuring node to do operations in the most efficient way, e.g. to minimize dead time during
writing.

The transfer buffer size for stream access is negotiated. By requiring a transfer size equal to or smaller
than the memory write size (page size), the node can ensure that the stream will pause during a write
operation.

 3.1.4 Large Volume Operations
The stream protocol is meant for large reads and writes, but the datagram protocol can also work well
on a single CAN segment. The difference in performance comes from a number of factors:

• Stream buffers may often be larger than datagram sizes.

• The header information for reads/writes only needs to be transmitted once for streams (no
matter how many buffer-size the transfer is), but once for every datagram.

• Streams have one byte less data per CAN frame than datagrams. This is approximately the same
overhead as 64-byte datagrams' headers.

• The setup cost of a stream is higher than a single datagram, so very short transfers are not
efficient using datagrams.

• The number of roundtrips per kB of data transmitted is significantly lower using streams than
datagrams. This has a huge impact on transfer rate if the originating and the terminating node is
NOT on the same CAN segment, but have to traverse routers, gateways and high-latency links
(e.g. wireless or links over the Internet), since for each direction change in the traffic there is no
transfer during one round-trip-time length of time. Queues in gateway between busy segments
will aggravate the deficiency of datagrams here.

All nodes support datagrams for configuration; not all support streams. So a least-common-
denominator configuration tool would use sequences of datagrams for even large transfers. Because the
need for reply, short datagrams are not particularly efficient. In the limiting case, you can only write
two bytes per frame exchange. The sending node should look at the Get Configuration reply and use
the largest available size.

On the other hand, if non-volatile memory timing requires that write operations to a node use a 64-byte
or smaller stream buffer size, then datagrams are a more efficient method than streams. In that case, the
node should indicate that stream-write operations are not supported in its reply to Get Configuration.
Since read operations don't have the same timing issues, streams may still be useful in that case.

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 14 of 15 - Feb 6, 2016

355

360

365

370

375

380

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.4.2OpenLCB Memory Configuration Technical Note

Table of Contents
 1 Introduction.. 1
 2 Annotations to the Standard... 1

 2.1 Introduction.. 1
 2.2 Intended Use...1
 2.3 Reference and Context... 1
 2.4 Message Formats..1

 2.4.1 Address Space Size... 2
 2.4.2 Address Space Selection... 3
 2.4.3 Generic Error Handling.. 3
 2.4.4 Read Command.. 3
 2.4.5 Read Reply..4
 2.4.6 Read Stream Command.. 5
 2.4.7 Read Stream Reply... 5
 2.4.8 Write Command..6
 2.4.9 Write Reply...6
 2.4.10 Write Under Mask Command...7
 2.4.11 Write Stream Command..8
 2.4.12 Write Stream Reply...8
 2.4.13 Get Configuration Options Command..8
 2.4.14 Get Configuration Options Reply...8
 2.4.15 Get Address Space Information Command.. 8
 2.4.16 Get Address Space Information Reply... 8
 2.4.17 Lock/Reserve Command.. 8
 2.4.18 Lock/Reserve Reply..8
 2.4.19 Get Unique ID Command...8
 2.4.20 Get Unique ID Reply.. 10
 2.4.21 Unfreeze Command.. 10
 2.4.22 Freeze Command.. 11
 2.4.23 Update Complete Command...11
 2.4.24 Reset/Reboot Command... 11
 2.4.25 Reinitialize/Factory Reset Command... 11

 3 General... 11
 3.1 Environment of Protocol.. 11

 3.1.1 Requirements.. 11
 3.1.2 Preferences..11
 3.1.3 Design Points.. 12

 3.1.3.1 Large read via stream..12
 3.1.3.2 Large write via stream...12
 3.1.3.3 Performance Note... 13
 3.1.3.4 Delays Due to Non-Volatile Memory... 13

 3.1.4 Large Volume Operations... 14

Copyright 2012-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 15 of 15 - Feb 6, 2016

385

http://openlcb.org/Licensing.html

	Adopted as a NMRA Technical Note
	Version History
	1 Introduction
	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 Reference and Context
	2.4 Message Formats
	2.4.1 Address Space Size
	2.4.2 Address Space Selection
	2.4.3 Generic Error Handling
	2.4.4 Read Command
	2.4.5 Read Reply
	2.4.6 Read Stream Command
	2.4.7 Read Stream Reply
	2.4.8 Write Command
	2.4.9 Write Reply
	2.4.10 Write Under Mask Command
	2.4.11 Write Stream Command
	2.4.12 Write Stream Reply
	2.4.13 Get Configuration Options Command
	2.4.14 Get Configuration Options Reply
	2.4.15 Get Address Space Information Command
	2.4.16 Get Address Space Information Reply
	2.4.17 Lock/Reserve Command
	2.4.18 Lock/Reserve Reply
	2.4.19 Get Unique ID Command
	2.4.20 Get Unique ID Reply
	2.4.21 Unfreeze Command
	2.4.22 Freeze Command
	2.4.23 Update Complete Command
	2.4.24 Reset/Reboot Command
	2.4.25 Reinitialize/Factory Reset Command

	3 General
	3.1 Environment of Protocol
	3.1.1 Requirements
	3.1.2 Preferences
	3.1.3 Design Points
	3.1.3.1 Large read via stream
	3.1.3.2 Large write via stream
	3.1.3.3 Performance Note
	3.1.3.4 Delays Due to Non-Volatile Memory

	3.1.4 Large Volume Operations

